A first course in fluid dynamics

A.R.PATERSON

Ċ

A first course in fluid dynamics

A.R. PATERSON

Lecturer in Mathematics, University of Bristol

CAMBRIDGE UNIVERSITY PRESS

Cambridge London New York New Rochelle Melbourne Sydney

Contents

Preface

	Introduction	1
1	Fluid dynamics	1
2	Structure of the text	3
3	Method of working	4
	Reference	5
I	Mathematical	
	preliminaries	7
1	Background knowledge	7
2	Polar coordinate systems	10
3	The vector derivative, ∇	13
4	Cartesian tensor methods	14
5	Integration formulae	17
6	Formulae in polar	
	coordinates	19
	Exercises	22
	References	24
II	Physical	
	preliminaries	25
1	Background knowledge	25
2	Mathematical modelling	25
3	Properties of fluids	27
4	Dimensional reasoning	29
	Exercise	30

ix

III **Observational** preliminaries 32 1 The continuum model 32 2 Fluid velocity and particle paths 34 3 Definitions 37 4 Streamlines and streaklines 39 Exercises 42 References 43 IV Mass conservation and stream functions 45 1 The continuity equation 45 2 The convective derivative 46 3 The stream function for two-dimensional flows 48 4 Some basic stream functions 53 5 Some flow models and the method of images 58 6 The (Stokes) stream function for axisymmetric flows 62 7 Models using the Stokes stream function 64 Exercises 68

References

70

V	Vorticity	71
1	Analysis of the motion	11
	near a point	71
2	Simple model flows	77
3	Models for vortices	80
4	Definitions and theorems	
	for vorticity	83
5	Examples of vortex lines	
	and motions	89
	Exercises	92
	References	94
VI	Hydrostatics	95
1	Body forces	95
2	The stress tensor	96
3	The form of the stress	
	tensor	99
4	Hydrostatic pressure and	
	forces	102
	Exercises	108
	References	110
VII	Thermodynamics	111
1	Basic ideas and equations	
	of state	111
2	Energy and entropy	115
3	The perfect gas model	118
4	The atmosphere	122
	Exercises	125
	References	126
	The equation of	
	motion	127
1	The fundamental form	127
2	Stress and rate of strain	128
3	The Navier-Stokes	
	equation	131
4	Discussion of the	
	Navier-Stokes equation	133
	Exercises	138
	References	139
IX	Solutions of the	
	Navier-Stokes	
	equations	140
1	Flows with only one	1
-	coordinate	140
2	Some flows with two	
2	variables	148
3	A boundary layer flow	157
4	Flow at high Reynolds	1.00
	number	160

ľ

	Exercises	165
	References	168
X	Inviscid flow	169
1	Euler's equation	169
2	The vorticity equation	170
3	Kelvin's theorem	177
4	Bernoulli's equation	180
5	Examples using	
	Bernoulli's equation	186
6	A model for the force on a	
	sphere in a stream	197
	Exercises	201
	References	204
XI	Potential theory	205
1	The velocity potential	205
1	and Laplace's equation	205
2	General properties of	205
2	Laplace's equation	200
2	Simple imposed flows	209
5	Simple irrotational flows	214
4	Solutions by separation	216
~	of variables	216
2	Separation of variables	
	for an axisymmetric flow:	
	Legendre polynomials	221
6	Two unsteady flows	228
7	Bernoulli's equation for	
	unsteady irrotational flow	232
8	The force on an	
	accelerating cylinder	236
9	D'Alembert's paradox	240
	Exercises	243
	References	247
XII	Sound waves in	
	fluids	248
1	Background	248
2	The linear equations for	
	sound in air	249
3	Plane sound waves	253
4	Plane wayes in musical	
	instruments	261
5	Plane waves interacting	
	with boundaries	264
6	Energy and energy flow	
v	in sound waves	272
7	Sound wayes in three	
,	dimensions	278
	Frereises	285
	References	200
	nejerences	200

vi

Contents

AIII	water waves	289
1	Background	289
2	The linear equations	290
3	Plane waves on deep water	293
4	Energy flow and group	
	velocity	297
5	Waves at an interface	300
6	Waves on shallower water	305
7	Oscillations in a container	310
8	Bessel functions	317
	Exercises	322
	References	324
XIV	High speed flow	
	of air	325
1	Subsonic and supersonic	
	flows	325
2	The use of characteristics	331
3	The formation of	
	discontinuities	339
4	Plane shock waves	350
	Exercises	359
	References	362
XV	Steady surface	
	waves in channels	363
1	One-dimensional	
	approximation	363
2	Hydraulic jumps or bores	370
3	Changes across a	
	hydraulic jump	377
4	Solitary waves	382
	Exercises	392
	References	395

XVI	The complex potential	396
1	Simple complex potentials	396
2	More complicated	
	potentials	402
3	Potentials for systems of	
	vortices	410
4	Image theorems	413
5	Calculation of forces	422
	Exercises	432
	References	434
XVII	Conformal mappings	

-	conformat mappings	
	and aerofoils	435
1	An example	435
2	Mappings in general	439
3	Particular mappings	448
4	A sequence of mappings	459
5	The Joukowski transfor-	
	mation of an ellipse	462
6	The cambered aerofoil	468
7	Further details on	
	aerofoils	476
	Exercises	479
	References	482
	Hints for exercises	483
	Answers for exercises	508
	Books for reference	519
	Index	521

vii